Volume regulation by Amphiuma red blood cells. The membrane potential and its implications regarding the nature of the ion-flux pathways

نویسنده

  • P. M. Cala
چکیده

After osmotic perturbation, the red blood cells of Amphiuma exhibited a volume-regulatory response that returned cell volume back to or toward control values. After osmotic swelling, cell-volume regulation (regulatory volume decrease; RVD) resulted from net cellular loss of K, Cl, and osmotically obliged H2O. In contrast, the volume-regulatory response to osmotic shrinkage (regulatory volume increase; RVI) was characterized by net cellular uptake of Na, Cl, and H2O. The net K and Na fluxes characteristic of RVD and RVI are increased by 1-2 orders of magnitude above those observed in studies of volume-static control cells. The cell membrane potential of volume-regulating and volume-static cells was measured by impalement with glass microelectrodes. The information gained from the electrical and ion-flux studies led to the conclusion that the ion fluxes responsible for cell-volume regulation proceed via electrically silent pathways. Furthermore, it was observed that Na fluxes during RVI were profoundly sensitive to medium [HCO3] and that during RVI the medium becomes more acid, whereas alkaline shifts in the suspension medium accompany RVD. The experimental observations are explained by a model featuring obligatorily coupled alkali metal-H and Cl-HCO3 exchangers. The anion- and cation-exchange pathways are separate and distinct yet functionally coupled via the net flux of H. As a result of the operation of such pathways, net alkali metal, Cl, and H2O fluxes proceed in the same direction, whereas H and HCO3 fluxes are cyclic. Data also are presented that suggest that the ion-flux pathways responsible for cell-volume regulation are not activated by changes in cell volume per se but by some event associated with osmotic perturbation, such as changes in intracellular pH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell volume regulation by Amphiuma red blood cells. The role of Ca+2 as a modulator of alkali metal/H+ exchange

In response to osmotic perturbation, the Amphiuma red blood cell regulates volume back to "normal" levels. After osmotic swelling, the cells lose K, Cl, and osmotically obliged H2O (regulatory volume decrease [RVD] ). After osmotic shrinkage, cell volume is regulated as a result of Na, Cl, and H2O uptake (regulatory volume increase [RVI] ). As previously shown (Cala, 1980 alpha), ion fluxes res...

متن کامل

Activation of Na+/H+ and K+/H+ exchange by calyculin A in Amphiuma tridactylum red blood cells: implications for the control of volume-induced ion flux activity.

Alteration in cell volume of vertebrates results in activation of volume-sensitive ion flux pathways. Fine control of the activity of these pathways enables cells to regulate volume following osmotic perturbation. Protein phosphorylation and dephosphorylation have been reported to play a crucial role in the control of volume-sensitive ion flux pathways. Exposing Amphiuma tridactylu red blood ce...

متن کامل

Coordinated control of volume regulatory Na+/H+ and K+/H+ exchange pathways in Amphiuma red blood cells.

The Na(+)/H(+) and K(+)/H(+) exchange pathways of Amphiuma tridactylum red blood cells (RBCs) are quiescent at normal resting cell volume yet are selectively activated in response to cell shrinkage and swelling, respectively. These alkali metal/H(+) exchangers are activated by net kinase activity and deactivated by net phosphatase activity. We employed relaxation kinetic analyses to gain insigh...

متن کامل

pH regulatory Na/H exchange by Amphiuma red blood cells

In Amphiuma red blood cells, the Na/H exchanger has been shown to play a central role in the regulation of cell volume following cell shrinkage (Cala, P. M. 1980. Journal of General Physiology. 76:683-708.) The present study was designed to evaluate the existence of pH regulatory Na/H exchange in the Amphiuma red blood cell. The data illustrate that when the intracellular pHi was decreased belo...

متن کامل

Activation of electroneutral K flux in Amphiuma red blood cells by N- ethylmaleimide. Distinction between K/H exchange and KCl cotransport

Exposure of Amphiuma red blood cells to millimolar concentrations of N-ethylmaleimide (NEM) resulted in net K loss. In order to determine whether net K loss was conductive or was by electroneutral K/H exchange or KCl cotransport, studies were performed evaluating K flux in terms of the thermodynamic forces to which K flux by the above pathways should couple. The direction and magnitude of the N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 76  شماره 

صفحات  -

تاریخ انتشار 1980